Nyström-based approximate kernel subspace learning
نویسندگان
چکیده
In this paper, we describe a method for the determination of a subspace of the feature space in kernel methods, which is suited to large-scale learning problems. Linear model learning in the obtained space corresponds to a nonlinear model learning process in the input space. Since the obtained feature space is determined only by exploiting properties of the training data, this approach can be used for generic nonlinear pattern recognition. That is, nonlinear data mapping can be considered to be a pre-processing step exploiting nonlinear relationships between the training data. Linear techniques can be subsequently applied in the new feature space and, thus, they can model nonlinear properties of the problem at hand. In order to appropriately address the inherent problem of kernel learning methods related to their time and memory complexities, we follow an approximate learning approach. We show that the method can lead to considerable operation speed gains and achieve very good performance. Experimental results verify our analysis.
منابع مشابه
Fast and Accurate Refined Nyström-Based Kernel SVM
In this paper, we focus on improving the performance of the Nyström based kernel SVM. Although the Nyström approximation has been studied extensively and its application to kernel classification has been exhibited in several studies, there still exists a potentially large gap between the performance of classifier learned with the Nyström approximation and that learned with the original kernel. ...
متن کاملNyström Approximations for Scalable Face Recognition: A Comparative Study
Kernel principal component analysis (KPCA) is a widelyused statistical method for representation learning, where PCA is performed in reproducing kernel Hilbert space (RKHS) to extract nonlinear features from a set of training examples. Despite the success in various applications including face recognition, KPCA does not scale up well with the sample size, since, as in other kernel methods, it i...
متن کاملLarge Scale Online Kernel Learning
In this paper, we present a new framework for large scale online kernel learning, making kernel methods efficient and scalable for large-scale online learning applications. Unlike the regular budget online kernel learning scheme that usually uses some budget maintenance strategies to bound the number of support vectors, our framework explores a completely different approach of kernel functional...
متن کاملLarge Scale Online Kernel Classification
In this work, we present a new framework for large scale online kernel classification, making kernel methods efficient and scalable for large-scale online learning tasks. Unlike the regular budget kernel online learning scheme that usually uses different strategies to bound the number of support vectors, our framework explores a functional approximation approach to approximating a kernel functi...
متن کاملHierarchically Compositional Kernels for Scalable Nonparametric Learning
We propose a novel class of kernels to alleviate the high computational cost of large-scale nonparametric learning with kernel methods. The proposed kernel is defined based on a hierarchical partitioning of the underlying data domain, where the Nyström method (a globally low-rank approximation) is married with a locally lossless approximation in a hierarchical fashion. The kernel maintains (str...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Pattern Recognition
دوره 57 شماره
صفحات -
تاریخ انتشار 2016